top of page

PAPERS & PUBLICATIONS

  • Curreli, C., Di Salvatore, V., Russo, G., Pappalardo, F., & Viceconti, M. (2022). A Credibility Assessment Plan for an In Silico Model that Predicts the Dose–Response Relationship of New Tuberculosis Treatments. Annals of Biomedical Engineering, 1-11

  • Kiagias, D., Russo, G., Sgroi, G., Pappalardo, F. and Miguel A. Juárez, Bayesian Augmented Clinical Trials in TB Therapeutic Vaccination, Frontiers in medical technologies (2021).

  • Russo, G., Di Salvatore, V., Sgroi, G., Parasiliti Palumbo, G.A., Pappalardo, F., A multi-step and multi-scale bioinformatic protocol to investigate potential SARS-CoV-2 vaccine targets, Briefing of Bioinformatics, 2021.

  • Russo, G., Pennisi, M., Fichera, E. et al. In silico trial to test COVID-19 candidate vaccines: a case study with UISS platform. BMC Bioinformatics 21, 527 (2020).
     

  • Juárez, M.A., Pennisi, M., Russo, G. et al. Generation of digital patients for the simulation of tuberculosis with UISS-TB. BMC Bioinformatics 21, 449 (2020).
     

  • Russo, G., Sgroi, G., Parasiliti Palumbo, G.A. et al. Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB. BMC Bioinformatics 21, 458 (2020).
     

  • ​​M. Viceconti, F. Pappalardo, B. Rodriguez, M. Horner, J. Bischoff, F. Musuamba Tshinanu. In Silico Trials: Verification, Validation And Uncertainty Quantification Of Predictive Models Used In The Regulatory Evaluation Of Biomedical Products. Methods. 2020 Jan 25. pii: S1046-2023(19)30245-2.

  • M. Pennisi, M. A. Juarez, G. Russo, F. Pappalardo, and M. Viceconti. Generation of digital patients for the simulation of tuberculosis with UISS-TB. In 3rd International Workshop on Computational Methods for the Immune System Function (CMISF 2019), IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2019), pp. 2163–2167, 2019.

  • G. Russo, F. Pappalardo, M. A. Juarez, M. Pennisi, P. J. Cardona, R. Colre, E. Fichera, M. Viceconti, Evaluation of the efficacy of RUTI and ID93/GLA-SE vaccines in tuberculosis treatment: in silico trial through UISS-TB simulator. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 2019, pp. 2197-2201

  • M. K. Chimeh, P. Heywood, M. Pennisi, F. Pappalardo and P. Richmond. Parallelisation strategies for agent based simulation of immune systems. BMC Bioinformatics 2019, 20(Suppl 6):579

  • M. Pennisi, G. Russo, G. Sgroi, A. Bonaccorso, G. A. Parasiliti Palumbo, E. Fichera, D. K. Mitra, K. B. Walker, P. Cardona, M. Amat, M. Viceconti and F. Pappalardo. Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS). BMC Bioinformatics 2019, 20(Suppl 6):504

  • Viceconti, M., Juárez, M. A., Curreli, C., Pennisi, M., Russo, G., & Pappalardo, F. (2019). Credibility of In Silico Trial Technologies—A Theoretical Framing. IEEE journal of biomedical and health informatics, 24(1), 4-13.

  • F. Pappalardo, G. Russo, F. M. Tshinanu, and M. Viceconti. In silico clinical trials: concepts and early adoptions. Briefings in Bioinformatics, 2018.

  • ​F. Pappalardo, G. Russo, M. Pennisi, G. Sgroi, G. A. Parasiliti Palumbo, S. Motta, and E. Fichera. An agent based modeling approach for the analysis of tuberculosis - immune system dynamics. In 2nd International Workshop on Computational Methods for the Immune System Function (CMISF 2018), IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018), pages 1386–1392, 2018.

bottom of page